Status of Drell-Yan Experiment by SeaQuest at FNAL

Florian Sanftl, Tokyo Institute of Technology

2012年11月8日
International Workshop on the Quark-Gluon Structure of the Nucleon @ 東工大
Today’s Menu

What we might learn today:

- Light antiquark flavour Asymmetry in the Proton
- Past Measurements
- The Drell-Yan Process as a tool to probe this Flavour Asymmetry
- The SeaQuest-Experiment and the 120 GeV beam
- Some commissioning results
- Conclusion and outlook
What is the Proton?

- Three “Valence” quarks
 - 2 “up” quarks (q = $+\frac{2}{3}$)
 - 1 “down” quark (q = $-\frac{1}{3}$)
- Bound together by gluons
- Gluons can split into quark-antiquark pairs (similar to the photon splitting into an electron-positron pair)
- The Proton “Sea” is formed of quarks and antiquarks
What’s the distribution of sea quarks?

In the nucleon:
- Sea and gluons are important:
 - 98% of mass; 60% of momentum at $Q^2 = 2\, \text{GeV}^2$
- Not just three valence quarks and QCD. Shown by E866/NuSea d-bar/u-bar data
- What are the origins of the sea?
- Significant part of LHC beam.

In nuclei:
- The nucleus is not just protons and neutrons
- What is the difference?
 - Bound system
 - Virtual mesons affects antiquarks distributions

November 8th 2012
Florian Sanftl, International Workshop
\[S_G = \frac{1}{3} \left(F_2^p - F_2^n \right) \frac{dx}{x} \]

\[= \frac{1}{3} + \int_0^1 \frac{2}{3} \left[\bar{u} - \bar{d} \right] dx \]

\[= \frac{1}{3} \]

\[u = d \]
\[S_G = 0.235 \pm 0.026 \]

Nuclear shadowing (double scattering of virtual photon from both nucleons in deuteron) \(\sim 4\text{-}10\% \) effect on Gottfried sum

\[\rightarrow \text{disagreement with naive calculation of GSR remains} \]
- Naïve Assumption: \(\bar{d}(x) = \bar{u}(x) \)

- NMC (Gottfried Sum Rule)
 \[
 \int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] dx \neq 0
 \]
- **Naïve Assumption:**
 \[
 \bar{d}(x) = \bar{u}(x)
 \]

- **NMC (Gottfried Sum Rule)**
 \[
 \int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] \, dx \neq 0
 \]

- **NA51 (Drell-Yan)**
 \[
 \bar{d} > \bar{u} \text{ at } x = 0.18
 \]
Naïve Assumption:
\[\bar{d}(x) = \bar{u}(x) \]

NMC (Gottfried Sum Rule)
\[\int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] \, dx \neq 0 \]

NA51 (Drell-Yan)
\[\bar{d} > \bar{u} \text{ at } x = 0.18 \]

E866/NuSea (Drell-Yan)
\[\frac{\bar{d}(x)}{\bar{u}(x)} \text{ for } 0.015 \leq x \leq 0.35 \]

Knowledge of distributions is data driven
- Sea quark distributions are difficult for Lattice QCD

November 8th 2012
Florian Sanftl, International Workshop
There is a gluon splitting component which is symmetric
\[\bar{d}(x) = \bar{u}(x) = \bar{q}(x) \]

\[\bar{d} - \bar{u} \]

- Symmetric sea via pair production from gluons subtracts off
- No Gluon contribution at 1st order in \(\alpha_s \)
- Nonperturbative models are motivated by the observed difference

A proton with 3 valence quarks plus glue **cannot be right at any scale!!**
- Meson Cloud in the nucleon
- Sullivan process in DIS
\[|p> = |p_0> + \alpha |N\pi> + \beta |\Delta\pi> + \ldots \]

- Chiral Models
- Interaction btw. Goldstone Bosons and valence quarks
\[|u> \rightarrow |d\pi^+> \text{ and } |d> \rightarrow |d\pi^-> \]

Perturbative sea apparently dilutes meson cloud effects at large-x
All non-perturbative models predict large asymmetries at high x.

Are there more gluons and therefore symmetric anti-quarks at higher x?

Does some mechanism like instantons have an unexpected x dependence? (What is the expected x dependence for instantons in the first place?)
Detector acceptance chooses x_{target} and x_{beam}.

- Fixed target -> high $x_F = x_{\text{beam}} - x_{\text{target}}$
- Valence Beam quarks at high-x.
- Sea Target quarks at low/intermediate-x.

$$\frac{d^2\sigma}{dx_1 dx_2} = \frac{4\pi\alpha^2}{9x_1 x_2} \frac{1}{s} \sum e^2 [\bar{q}_t(x_t)q_b(x_b) + q_t(x_t)\bar{q}_b(x_b)]$$

$$\frac{\sigma^{pd}}{2\sigma^{pp}} \bigg|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]$$
Fermilab E866/NuSea
- Data in 1996-1997
 - 1H, 2H, and nuclear targets
 - 800 GeV proton beam

Fermilab E906/SeaQuest
- Commissioning in April & May 2012
 - 2 years of physics data-run beginning in June 2012
 - 1H, 2H, and nuclear targets
 - 120 GeV proton Beam

- Cross section scales as $1/s$
 - $7x$ that of 800 GeV beam
- Backgrounds, primarily from J/ψ decays scale as s
 - $7x$ Luminosity for same detector rate as 800 GeV beam

50x statistics!!

\[
\frac{d^2\sigma}{dx_1 dx_2} = \frac{4\pi \alpha^2}{9x_1 x_2} \frac{1}{s} \sum_{i} c_i \left[q_{ti}(x_t) \bar{q}_{bi}(x_b) + \bar{q}_{ti}(x_t) q_{bi}(x_b) \right]
\]
SeaQuest will extend these measurements to $x_B > 0.3$ and reduce statistical uncertainties.

E906 expects systematic uncertainty to remain at approx. 1% in cross section ratio.
The E906-Spectrometer

Solid Iron
Focusing Magnet, Hadron absorber and beam dump

Station 1:
Hodoscope array
MWDC tracking

Mom. Meas.
(KTeV Magnet)

Station 2 and 3:
Hodoscope array
Drift Chamber tracking

Station:
Hodoscope array
Prop tube tracking

Liquid H₂, d₂, and solid targets (Fe, W, C)

25m

Hadron Absorber
(Iron Wall)

Drawing: T. O’Connor and K. Bailey

November 8th 2012

Florian Sanftl, International Workshop
• St. 4 Prop Tubes: Homeland Security via Los Alamos
• St. 3 & 4 Hodo PMT’s: E-866, HERMES, KTeV
• St. 1 & 2 Hodoscopes: HERMES
• St. 2 & 3Minus- tracking: E-866
• St. 3Plus: NEW from Tokyo Tech!!!
• St. 2 Support Structure: KTeV
• Target Flasks: E-866
• Cables: KTeV

Station 3: NEW from Tokyo Tech
Station 3-: to be upgraded for Run2

• 2nd Magnet: KTeV Analysis Magnet
• Hadron Absorber: Fermilab Rail Head???
• Solid Fe Magnet Coils: E-866 SM3 Magnet
• Shielding blocks: old beamline (Fermilab Today)
• Solid Fe Magnet Flux Return Iron: E-866 SM12 Magnet
• 53 MHz beam repetition frequency (18.9ns)
• 5 seconds every minute: 2×10^{12} protons/sec
 (5 W, 1×10^{13} protons/min)
• 5.2×10^{18} total protons on target for E906 Physics Runs

18.9 ns RF buckets with 1-2 ns width

• First successful beam delivery to the E906/SeaQuest spectrometer on March 8th 2012!!
• Commissioning run for 2 months in March and April 2012
• From May 2012 Main Injector shut down for high luminosity upgrade
First candidate of a di-muon-pair @ SeaQuest

J/Psi candidate with an invariant mass of ~3.29 GeV
Simple Tracking Scheme

$z_0 = 0 \text{ cm}$

$z_{\text{bend}} = 375 \text{ cm}$

Mom. vs. Kick (Slope difference)

Mom. Resolution (%)

Mass Resolution (GeV)

November 8th 2012
Florian Sanftl, International Workshop
• **Very, very preliminary (!!!!):** just clean events are being reconstructed (< 1% of all recorded events)

• Clean = a few hits per tracking station, just a few thousand clean track candidates
Why preliminary?

• Large number of hits on all stations from high instantaneous beam rate
 -> makes track reconstruction difficult for those events (“SPLAT events”)
• One explanation: tuning problems due to first ever beam extraction from Main Injector to the Fixed Target Lines
• Very high or highly fluctuating spill structure causing exceedingly high instantaneous luminosities

• Main efforts by the Tokyo Tech group to extract as much as possible tracks out of “SPLAT” events
• Main Strategies:
 • Inhibit/Veto schemes
 • Intelligent Track Selection/Seeding
The structure of the proton is far away from being completely understood.

The mechanisms causing a Flavour Asymmetry of the Nucleon Sea can be of different origin and are not yet completely understood -> More precise data is needed.

SeaQuest is the latest high rate Drell-Yan experiment allowing direct access to the Antiquark Flavour Asymmetry of the Proton.

SeaQuest was successfully commissioned in March & April 2012.

First, preliminary di-muon mass spectrum could be reconstructed.

SeaQuest collaboration is working on strategies how to deal with high Occupancy events (Inhibit formalism, Track Seeding strategies etc.) to re-fine the spectrum statistics.

SeaQuest will be running continuously for 2 years to start its physics program.
Kinematics
(From Fred Olness, CTEQ)

Kinematics in the Hadronic Frame

\[s = (P_1 + P_2)^2 = \frac{\hat{s}}{x_1 x_2} = \frac{\hat{s}}{\tau} \]

\[P_1 = \frac{\sqrt{s}}{2} (1,0,0,+1) \quad P_1^2 = 0 \]

\[P_2 = \frac{\sqrt{s}}{2} (1,0,0,-1) \quad P_2^2 = 0 \]

Therefore

\[\tau = x_1 x_2 = \frac{\hat{s}}{s} \equiv \frac{Q^2}{s} \]

Fractional energy squared between partonic and hadronic system
Longitudinal Momentum Distributions

Partonic CMS has longitudinal momentum w.r.t. the hadron frame

\[p_{12} = (p_1 + p_2) = (E_{12}, 0, 0, p_L) \]

\[E_{12} = \frac{\sqrt{s}}{2} (x_1 + x_2) \]

\[p_L = \frac{\sqrt{s}}{2} (x_1 - x_2) \equiv \frac{\sqrt{s}}{2} x_F \]

\(x_F \) is a measure of the longitudinal momentum

The rapidity is defined as:

\[x_{1,2} = \sqrt{\tau} e^{\pm y} \]

\[d x_1 d x_2 = d \tau dy \]

\[d Q^2 dx_F = dy d\tau s \sqrt{x_F^2 + 4 \tau} \]
Overview of Models

- **Pauli Blocking**
 (excess up-valence quarks suppresses creation up-anti-up-pair)

- **Meson Cloud in the nucleon-Sullivan Process**
 \[
 \langle P | P \rangle = (1 - a - b) \langle P_0 | P_0 \rangle + a \langle N_0 \pi | N_0 \pi \rangle + b \langle \Delta_0 \pi | \Delta_0 \pi \rangle \ldots
 \]

 \[
 \int_0^1 [\bar{d}(x) - \bar{u}(x)] = \frac{2a - b}{3} = 0.10 \rightarrow a = 0.2 = 2b \quad g_A = \int_0^1 [\Delta u - \Delta d] dx = \frac{5}{3} - \frac{20}{27} \sqrt{2ab} \rightarrow 1.5
 \]

- **Chiral Quark models – effective Lagrangians:**
 \[
 \langle q| q \rangle = \left[1 - \frac{3a}{2} \right] \langle q| q \rangle + \frac{3a}{2} \langle q \pi | q \pi \rangle
 \]

 \[
 \int_0^1 [\bar{d}(x) - \bar{u}(x)] = \frac{2a}{3} = 0.10 \rightarrow a = 0.14 \quad g_A = \int_0^1 [\Delta u - \Delta d] dx = \frac{5}{3} 3a \rightarrow 1.43
 \]

- **Instantons** (so far no kinematic dependence known…)

- **Statistical Parton Distributions**
"Splat" block scheme formulated
- "Inhibit card" to veto events with large number of hits
- 160ns integration window – count hodoscope hits (is it greater than threshold?)
Why preliminary?

• “Splat” block scheme only applies to back of SeaQuest detector
• High occupancy of hits in the first Tracking Stations
• Strategies to select proper hits:

Reference Vector #1

Reference Vector #2

St2 Sagitta

St1 & St2 Sagitta

Reference Plane

Station3, Layer i

Station2, Layer i

Station1, Layer i

Beam Dump

Beam

November 8th 2012

Florian Sanftl, International Workshop
The Track Seeder: In Formulas...

\[s_i = \frac{q \cdot c_D}{p_z} \quad \text{and} \quad c_{ij} = \frac{s_i}{s_j} = \frac{c_D^i}{c_D^j} = \text{const.} \]

is basically a function \(f(L,B) \), where \(L \) is the arch and \(B \) the magnetic field.

In the following the ratio St1-Sagitta/St2-Sagitta are shown!!!
The Track Seeder: Sagitta Ratios

Pretty clear linear correlation!!!

St1-Sagitta vs. St2-Sagitta: D1U-Projections
Abilene Christian University
Obiageli Akinbule
Brandon Bowen
Mandi Crowder
Tyler Hague
Donald Isenhower
Ben Miller
Rusty Towell
Marissa Walker
Shon Watson
Ryan Wright

Academia Sinica
Wen-Chen Chang
Yen-Chu Chen
Shiu Shiuan-Hal
Da-Shung Su

Argonne National Laboratory
John Arrington
Don Geesaman*
Kawtar Hafidi
Roy Holt
Harold Jackson
David Potterveld
Paul E. Reimer*
Josh Rubin

University of Colorado
Joshua Braverman
Ed Kinney
Po-Ju Lin
Colin West

Fermi National Accelerator Laboratory
Chuck Brown
David Christian

University of Illinois
Bryan Dannowitz
Dan Jumper
Bryan Kerns
Naomi C.R Makins
Jen-Chieh Peng

KEK
Shin'ya Sawada

Ling-Tung University
Ting-Hua Chang

Los Alamos National Laboratory
Gerry Garvey
Mike Leitch
Han Liu
Ming Xiong Liu
Pat McGaughey

University of Maryland
Prabin Adhikari
Betsy Beise
Kaz Nakahara

University of Michigan
Brian Ball
Wolfgang Lorenzon
Richard Raymond

National Kaohsiung Normal University
Runngsheng Guo
Su-Yin Wang

RIKEN
Yuji Goto
Atsushi Taketani
Yoshinori Fukao
Manabu Togawa

Rutgers University
Lamiaa El Fassi
Ron Gilman
Ron Ransome
Elaine Schulte
Brian Tice
Ryan Thorpe
Yawei Zhang

Texas A & M University
Carl Gagliardi
Robert Tribble

Thomas Jefferson National Accelerator Facility
Dave Gaskell
Patricia Solvignon

Tokyo Institute of Technology
Toshi-Aki Shibata
Kenichi Nakano
Florian Sanftl
Shintaro Takeuchi
Shou Miyasaka

Yamagata University
Yoshiyuki Miyachi