Multiparticle Measurement in Polarized Proton-Proton Collisions at PHENIX

APS/JPS Second Joint Meeting
Sep. 19, 2005

Kenichi Nakano (Tokyo Tech/RIKEN)
for the PHENIX Collaboration
Introduction

- Gluon polarization in proton (spin puzzle)

\[\frac{1}{2} \text{proton} = \frac{1}{2} \sum_q \Delta q + \Delta g + L_{q,g} \]

\[\Delta q / \Delta g: \text{quark/gluon spin} \]

\[L_{q,g}: \text{orbital angular momenta} \]

- reactions accessible to \(\Delta g \) ... jet, inclusive \(\pi^0 \), direct photon, etc.

- Can jet production be observed by measuring particle clusters with PHENIX Central Arm (\(\Delta \phi = 90^\circ \times 2, |\eta| < 0.35 \))?

- Double helicity asymmetry (\(A_{LL} \)) of jet production

\[A_{LL} \equiv \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_B P_Y} \frac{N_{++} - R N_{+-}}{N_{++} + R N_{+-}}, \quad R \equiv \frac{L_{++}}{L_{+-}} \]

- \(A_{LL} \) has an information on \(\Delta g \)

- \(g+g \) and \(q+g \) reactions are dominant in mid-\(p_T \) jet productions

- for \(gg \rightarrow gg \) reaction, \(A_{LL}^{gg\rightarrow gg} = \int dx_1 dx_2 \frac{\Delta g(x_1)}{g(x_1)} \cdot \frac{\Delta g(x_2)}{g(x_2)} \cdot \hat{a}_{LL}^{gg\rightarrow gg} \)

- \(A_{LL} \) in multiparticle measurement is a modified \(A_{LL} \) of jet production
PHENIX Detector and Data Set

- Longitudinally polarized proton-proton collision
 - RHIC Run2003
 - polarization 26%
 - $\sqrt{s} = 200$ GeV
 - luminosity 0.25 pb$^{-1}$

- PHENIX Central Arms: $\Delta \phi = 90^\circ \times 2$, $|\eta| < 0.35$

- Event selection
 - $p_T(\text{photon}) > 2$ GeV/c (offline trigger)

- Particle selection
 - photon: detected with EMCal
 - $p_T > 0.4$ GeV/c
 - charged veto
 - shower shape cut
 - charged particle: detected with DC & PC1
 - $0.4 < p_T < 4.0$ GeV/c
 - track quality cut
Method of Multiparticle Measurement

- Particle clustering with cone
 - photons \((p_T > 0.4 \text{ GeV}/c) \) and charged particles \((0.4 < p_T < 4.0 \text{ GeV}/c) \)
 - make cones by using all particles as seed
 - cone radius \(R = 0.3 \)
 - cone momentum = vector sum of momenta of particles in the cone
 - cone axis = direction of cone momentum (dir. of seed particle at first)
 - use highest-\(p_T \) cone in events

- Definition of kinematic variables; \(p_T^{\text{cone}} \) and \(p_T^{\text{sum}} \)

\[
p_T^{\text{cone}} \equiv \sum_{i \text{ in cone}} p_{Ti}
\]

\[
p_T^{\text{sum}} \equiv \sum_{i \text{ in arm}} p_{Ti}
\]
Method of Multiparticle Measurement

- A_{LL} of multiparticle production
 - measured as a function of p_T^{cone}
 - compared with theoretical A_{LL} predictions
 - the ratio $p_T^{\text{cone}}/p_T^{\text{jet}}$ was evaluated with simulation
 - the reproducibility of simulation was checked with event shape

- PYTHIA (Ver. 6.220) + GEANT simulation
 - Two settings to study the effect of the underlying event
 - PYTHIA default
 - PYTHIA Multi-Parton Interaction (MPI) ... "Rick Field Tune A"
 - experimental losses/contaminations are included in simulation
 - detector masked/dead channels ... <5%
 - non-vertex emc clusters ... 1.9% @ 1~2 GeV/c, 0.7% @ 5~6 GeV/c
 - neutral hadron contamination etc.
Results – Event Shape

p_T density D_{pT}

$$D_{pT}(\Delta \phi) = \left\langle \frac{d}{d\phi} \left(\sum_{i \in \{ |\eta| < 0.35 \}} p_{T,i} \right) \right\rangle_{\text{event}}$$

- trigger photon within 20° from edge ... not affected by edge up to $\Delta \phi = 70^\circ$

![Graphs showing p_T density comparison between real data and PYTHIA default/MPI models at different p_T sums.](image)

- real data and PYTHIA default/MPI match at small $\Delta \phi$
- clear difference between PYTHIA default and MPI at large $\Delta \phi$
- real data agrees better with PYTHIA MPI
Results – Event Shape

PHENIX thrust T_{PH}

\[T_{PH} = \frac{\sum |p_i \cdot \hat{p}|}{\sum |p_i|}, \quad \hat{p} = \frac{\sum p_i}{|\sum p_i|} \]

- calculated with one arm
- “$N \geq 3$” cut is applied

4 < pT sum < 5 GeV/c

10 < pT sum < 11 GeV/c

- PYTHIA MPI has more gradual distribution than PYTHIA default
- real data agrees better with PYTHIA MPI
Results – Double Helicity Asymmetry A_{LL}

- A_{LL} is evaluated with PHENIX Run2003 p+p data

$$A_{LL} \equiv \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}, \quad R \equiv \frac{L_{++}}{L_{+-}}$$

- Theory predictions
 - PHENIX Central Arm acceptance ($|\eta|<0.35$) and $R=0.3$ cone
 - p_T^{jet} in theory calculation is scaled to p_T^{cone} by ratios estimated with PYTHIA+GEANT
 - at $6 < p_T^{cone} < 7 \text{ GeV/c}$, $<p_T^{cone}/p_T^{jet}> = 0.72$ with PYTHIA default, 0.87 with PYTHIA MPI
 - trigger bias effect is evaluated with PYTHIA as the modification of subprocess fractions (qq, qg, gg)
 - gg subprocess are suppressed by trigger photon requirement at low p_T
Results – Double Helicity Asymmetry A_{LL}

A_{LL} is evaluated with PHENIX Run2003 p+p data

$$A_{LL} \equiv \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

The difference between p_T^{jet} in theory and p_T^{parton} in PYTHIA is included in p_T^{cone} scale uncertainty.

Graphical Description:
- Black line: theory without correction
- Blue/green line: PYTHIA default/MPI
- Solid/dash: with/without trigger bias
- Shade: max. scale uncertainty of pT cone

Legend:
- $\Delta g = g$ input
- GRSV-std

Data Points:
- 0.25 pb$^{-1}$, 26% pol.

PHENIX Preliminary
Results – Double Helicity Asymmetry A_{LL}

A_{LL} error estimation for Run2005 statistics
- polarization 26% \rightarrow 45%, luminosity 0.25 pb$^{-1}$ \rightarrow 4.0 pb$^{-1}$

Run2005 statistics and further systematic study will bring suggestive result
Summary

- Gluon polarization in proton (spin puzzle)
 \[\frac{1}{2} \text{proton} = \frac{1}{2} \sum_{q} \Delta q + \Delta g + L_{q,g} \]

- Longitudinally polarized proton-proton collision
 - RHIC-PHENIX Run2003
 - √s = 200 GeV
 - polarization 26%
 - luminosity 0.25 pb⁻¹

- Double helicity asymmetry \(A_{LL} \) of multiparticle production
 - particle clustering with \(R=0.3 \) cone
 \[p_{T \text{cone}} \equiv \sum_{i \text{ in cone}} p_{T \text{i}} \]
 - \(A_{LL} \) as a function of \(p_{T \text{cone}} \) with PHENIX Central Arm (\(\Delta \phi = 90^\circ \times 2, |\eta| < 0.35 \))
 - the relation between \(p_{T \text{cone}} \) and \(p_{T \text{jet}} \) was evaluated with PYTHIA + GEANT simulation
 - PHENIX Run2005 statistics and further systematic study will bring suggestive result
Backup Slides...
Results – Double Helicity Asymmetry A_{LL}

- A_{LL} is evaluated with PHENIX Run2003 p+p data

 \[
 A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_B P_Y} \frac{N_{++} - R N_{+-}}{N_{++} + R N_{+-}} , \quad R = \frac{L_{++}}{L_{+-}}
 \]

- Theory predictions

 - PHENIX Central Arm acceptance ($|\eta| < 0.35$) and $R=0.3$ cone
 - p_T^{jet} in theory calculation is scaled to p_T^{cone} by ratios estimated with PYTHIA+PISA
 - trigger bias effect is evaluated with PYTHIA as the modification of subprocess fractions (qq, qg, gg)

- A_{LL} without trigger photon

 \[\Delta g = \text{g input}\]

 \[\Delta g = -\text{g input}\]

 \[\Delta g = 0 \text{ input}\]

 by W. Vogelsang

- $6 < p_T^{cone} < 7 \text{ GeV/c}$

 - mean 0.72
 - 0.87

 PYTHIA default

 PYTHIA MPI
Results – Double Helicity Asymmetry A_{LL}

A_{LL} is evaluated with PHENIX Run2003 p+p data

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{NN_{++} + RN_{+-}} , \quad R = \frac{L_{++}}{L_{+-}}$$

Theory predictions

- PHENIX Central Arm acceptance ($|\eta|< 0.35$) and $R=0.3$ cone
- p_T^{jet} in theory calculation is scaled to p_T^{cone} by ratios estimated with PYTHIA+PISA
- trigger bias effect is evaluated with PYTHIA as the modification of subprocess fractions (qq, qg, gg)

A_{LL} without trigger photon by W. Vogelsang

GRSV-std

$\Delta g = g$ input

$\Delta g = -g$ input

$\Delta g = 0$ input

$6 < p_T^{\text{cone}} < 7 \text{ GeV/c}$

mean 0.72

0.87
Results – Event Shape

Multiplicity ... the number of photons \((p_T > 0.4 \text{ GeV/c})\) and charged particles \((0.4 < p_T < 4.0 \text{ GeV/c})\)

- PYTHIA MPI has larger multiplicity in arm than PYTHIA default
- this difference is small in cone
- real data agrees with PYTHIA MPI
p_T Density (1/2)
p_T Density (2/2)
$p_T^{\text{cone}}/p_T^{\text{parton}} (1/2)$
$p_T^{\text{cone}} / p_T^{\text{parton}}$ (2/2)

- $8 < p_T^{\text{cone}} < 9 \text{ GeV/c}$
- $9 < p_T^{\text{cone}} < 10 \text{ GeV/c}$
- $10 < p_T^{\text{cone}} < 11 \text{ GeV/c}$

PYTHIA default

PYTHIA MPI

$11 < p_T^{\text{cone}} < 12 \text{ GeV/c}$

PYTHIA default

PYTHIA MPI

$0.55 \leq p_T^{\text{cone}} / p_T^{\text{parton}} \leq 1.00$

$p_T^{\text{cone}} [\text{GeV/c}]$

$p_T^{\text{cone}} / p_T^{\text{parton}}$
Trigger Bias for Fraction of Subprocesses

PYTHIA default

PYTHIA default with trigger photon

PYTHIA MPI

PYTHIA MPI with trigger photon