FNAL ドレル・ヤン実験 SeaQuest による 陽子内の反クォークフレーバー非対称度の測定

日本物理学会 第 73 回年次大会
2018/03/22 @ 東京理科大学, 22aL401-7

中野健一, 後藤雄二, 澤田真也, 澤田崇広, 柴田利明, 永井慧, 宮地義之, 他 SeaQuest collaboration

東工大理
Partonic Structure of Proton (Nucleon)

- Quarks, anti-quarks & gluons

The anti-quark distribution is flavor symmetric?
- Strong force is independent of flavor
- Splittings of $g \rightarrow u\bar{u}$ & $g \rightarrow d\bar{d}$ occur equally
Anti-Quark Flavor Asymmetry: \bar{d}/\bar{u}

- CERN NMC ('90): deep inelastic muon scattering
 - Gottfried Sum: $S_G = 0.2281(65) < 1/3 \implies \int \bar{d}(x)dx > \int \bar{u}(x)dx$
- Measurement of x dependence of $\bar{u}(x)$ & $\bar{d}(x)$: Drell-Yan process
 - CERN NA51 ('94): $\bar{d} > \bar{u}$ at $x \sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

- $\bar{d}(x)/\bar{u}(x)$ at high x is not well known. Being measured by SeaQuest
 - Statues of data taking & data analysis are presented in this talk

70% asymmetry!
Measurement of $\bar{d}(x)/\bar{u}(x)$ with Drell-Yan Process

- Drell-Yan process: $p + p \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$
 - Invariant mass: $M^2 = x_{\text{beam}} x_{\text{target}} s$
 - Rapidity: $\exp Y = \sqrt{x_{\text{beam}}/x_{\text{target}}}$
 - $x_{\text{beam}} = \frac{M}{\sqrt{s}} e^Y$, $x_{\text{target}} = \frac{M}{\sqrt{s}} e^{-Y}$
 - Cross section at LO:
 $$\frac{d^2 \sigma}{dx_{\text{be}}dx_{\text{ta}}} = \frac{4\pi \alpha^2}{9x_{\text{be}}x_{\text{ta}}} \frac{1}{s} \sum_{q=u,d} e_q^2 \{ q_{\text{be}}(x_{\text{be}}) \bar{q}_{\text{ta}}(x_{\text{ta}}) + \bar{q}_{\text{be}}(x_{\text{be}}) q_{\text{ta}}(x_{\text{ta}}) \}$$
 - Only "$q_{\text{be}}(x_{\text{be}}) \bar{q}_{\text{ta}}(x_{\text{ta}})$" survives @ forward rapidity, i.e. quark in beam & anti-quark in target

- Ratio of cross sections with LH2 & LD2 targets
 $$\frac{\sigma_{pd}(x_{\text{ta}})}{2\sigma_{pp}(x_{\text{ta}})} \approx \frac{1}{2} \left(1 + \frac{\bar{d}(x_{\text{ta}})}{\bar{u}(x_{\text{ta}})} \right)$$

- SeaQuest reveals $\bar{d}(x)/\bar{u}(x)$ at higher $x (\gtrsim 0.3)$ using lower beam energy ($E = 120$ GeV)
E906/SeaQuest Spectrometer

- Targets: LH$_2$, LD$_2$, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump
• A typical Drell-Yan event (top view) ... mass = 6 GeV, \(\theta_{\mu^+} = 90^\circ, \phi_{\mu^+} = 0^\circ \)

Detection of dimuons

○ Station 1-3 : Tracking with drift chambers
○ Station 4 : Particle identification with drift tube
○ Momenta of detected muons are 40 GeV/c on average
Status of Data Taking

• Data-taking periods

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>03-04</td>
<td>1st data taking (commissioning)</td>
</tr>
<tr>
<td>2013</td>
<td>11-</td>
<td>2nd data taking (10 months)</td>
</tr>
<tr>
<td>2014</td>
<td>11-</td>
<td>3rd data taking (8 months)</td>
</tr>
<tr>
<td>2015</td>
<td>10-</td>
<td>4th data taking (10 months)</td>
</tr>
<tr>
<td>2016</td>
<td>12-</td>
<td>5th data taking (7 months)</td>
</tr>
</tbody>
</table>

• Beam protons on targets
 ○ 1.4×10^{18} recorded
 ○ 0.6×10^{18} analyzed for preliminary \bar{d}/\bar{u}

• New data taken in FY2017
 ○ 0.3×10^{18} recorded
 ○ Wider chamber acceptance at St. 1
 \implies 40% more events at high x (~ 0.4)
 ○ Top+Top & Bottom+Bottom events (thanks to faster DAQ)
 \implies 30% more events
Status of Data Analysis

- Measurement of Drell-Yan events
 - LH2 & LD2 targets
 \[
 \frac{\sigma_{pd}(x_{ta})}{2\sigma_{pp}(x_{ta})} \approx \frac{1}{2} \left(1 + \frac{\bar{d}(x_{ta})}{\bar{u}(x_{ta})} \right)
 \]
 - Invariant mass ≥ 4.2 GeV

- Correction of event yields for
 - Backgrounds (combinatorial & non-target dimuons)
 - Reconstruction efficiency (due to detector hit rates)

- Extraction of \bar{d}/\bar{u} from $\sigma_{pd}/2\sigma_{pp}$
 - Calculation of $\sigma_{pd}/2\sigma_{pp}$ at LO without assuming $x_{be} \gg x_{ta}$

- Improvements toward final result
 - Parameter tunings
 - Better S/N ratio
 - Better hit-rate dependence
 \[
 \frac{d^2\sigma}{dx_{be}dx_{ta}} = \frac{4\pi\alpha^2}{9x_{be}x_{ta}s} \sum_{q=u,d} e_q^2 \{ q_{be}(x_{be})\bar{q}_{ta}(x_{ta}) + \bar{q}_{be}(x_{be})q_{ta}(x_{ta}) \}
 \]
\(\bar{d}(x)/\bar{u}(x) — \text{SeaQuest Preliminary Result} \)

- Systematic errors
 - H in LD2
 - BG subtraction
 - Tracking efficiency
 - and others

- \(\bar{d}/\bar{u} > 1 \) was observed even at high \(x \)
- Physical reasons for the difference between SeaQuest & E866 at \(x \sim 0.3 \) are being investigated
- The \(\bar{d}(x)/\bar{u}(x) \) extraction at NLO will be done
Nuclear Effect on Deuteron at SeaQuest

- Theoretical estimates of $\sigma^{pd}/2\sigma^{pp}$
 - PRD86, 094037: Fermi motion & π exchange
 - PRD90, 014010: nuclear smearing & off-shell corrections

- Large change by π exchange, but large parameter dependence (i.e. πNN form factor)
- Not sizable ($\lesssim 5\%$) at $x \lesssim 0.4$
 - for SeaQuest and also E866
- Sizable ($\sim 50\%$) & large model dep. at $x \gtrsim 0.4$
Summary

- Partonic structure of proton
 - Large anti-quark flavor asymmetry, $\bar{d}(x)/\bar{u}(x)$, was observed
 - SeaQuest measures $\bar{d}(x)/\bar{u}(x)$ at high x with Drell-Yan process

- SeaQuest experiment @ Fermilab
 - Recorded 1.4×10^{18} protons on targets by July 2017
 - Analyzed 0.6×10^{18} protons for preliminary \bar{d}/\bar{u}

- Measurement of $\bar{d}(x)/\bar{u}(x)$
 - $\bar{d}(x)/\bar{u}(x) > 1$ was found up to $x = 0.58$
 - The difference from E866 result is being investigated
 - Studies & improvements for final result
 - Better S/N ratio
 - Better hit-rate dependence
 - Nuclear effect on deuteron
 - NLO extraction of $\bar{d}(x)/\bar{u}(x)$